Part Number Hot Search : 
TS4141 AN7280S ISL9011A PP80N0 NJM25 AN3296S FDS3692 AWT6107
Product Description
Full Text Search
 

To Download VNQ600A-1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R) P
VNQ600A(8960)
QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE VNQ600A(8960) RDS(on)(*) 30m Ilim 25A VCC 36 V
(*) Per each channel at VCC=13V
nSHUT-DOWN
s s
DC SHORT CIRCUIT CURRENT: 25A s CMOS COMPATIBLE INPUTS s PROPORTIONAL LOAD CURRENT SENSE s UNDERVOLTAGE & OVERVOLTAGE
s
SO-28 (DOUBLE ISLAND)
ORDER CODES PACKAGE TUBE T&R SO-28 VNQ600A(8960) VNQ600A(8960)TR
OVERVOLTAGE CLAMP THERMAL SHUT-DOWN s CURRENT LIMITATION s VERY LOW STAND-BY POWER DISSIPATION s PROTECTION AGAINST: nLOSS OF GROUND & LOSS OF VCC s REVERSE BATTERY PROTECTION (**) DESCRIPTION The VNQ600A(8960) is a quad HSD formed by assembling two VND600 chips in the same SO-28 ABSOLUTE MAXIMUM RATING
Symbol VCC -VCC IOUT IR IIN VCSENSE IGND
package. The VND600 is a monolithic device designed in| STMicroelectronics VIPower M0-3 Technology. The VNQ600A(8960) is intended for driving any type of multiple loads with one side connected to ground. This device has four independent channels and four analog sense outputs which deliver currents proportional to the outputs currents. Active current limitation combined with thermal shut-down and automatic restart protect the device against overload. Device automatically turns off in case of ground pin disconnection.
Value 41 -0.3 15 -15 +/- 10 -3 +15 -200 4000 2000 5000 5000 126 6.25 Internally Limited -55 to 150 Unit V V A A mA V V mA V V V V mJ W C C
Parameter Supply voltage (continuous) Reverse supply voltage (continuous) Output current (continuous), for each channel Reverse output current (continuous), for each channel Input current Current sense maximum voltage Ground current at Tpins < 25C (continuous) Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT - CURRENT SENSE - OUTPUT - VCC Maximum Switching Energy (L=0.11mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=40A) Power dissipation (per island) at Tlead=25C Junction operating temperature Storage temperature
VESD
EMAX Ptot Tj Tstg
(**) See application schematic at page 9.
June 2003
1/18
VNQ600A(8960)
BLOCK DIAGRAM
VCC 1,2
OVERVOLTAGE UNDERVOLTAGE DEMAG 1
DRIVER 1
OUTPUT 1 ILIM1
INPUT 1 LOGIC INPUT 2 GND 1,2 OVERTEMP. 1 OVERTEMP. 2 IOUT2
DRIVER 2
IOUT1
K
CURRENT SENSE 1 OUTPUT 2
DEMAG 2 ILIM2 K CURRENT SENSE 2
OVERVOLTAGE UNDERVOLTAGE DEMAG 3
DRIVER 3
VCC 3,4
OUTPUT 3 ILIM3
INPUT 3 LOGIC INPUT 4 GND 3,4 OVERTEMP. 3 OVERTEMP. 4 IOUT4
DRIVER 4
IOUT3
K
CURRENT SENSE 3 OUTPUT 4
DEMAG 4 ILIM4 K CURRENT SENSE 4
2/18
VNQ600A(8960)
CURRENT AND VOLTAGE CONVENTIONS
IS1,2 IS3,4 VCC1,2 VCC3,4 IOUT1 OUTPUT1 IOUT2 OUTPUT2 OUTPUT3 IOUT3 IOUT4 OUTPUT4 VOUT4 GND3,4 IGND1,2 VOUT3 VOUT1 VOUT2
VCC1,2 IIN1 VIN1 VSENSE1 VIN2 VSENSE2 VIN3 ISENSE1 IIN2 ISENSE2 IIN3 ISENSE3 INPUT1 CUR. SENSE1 INPUT2 CUR. SENSE2 INPUT3 CUR. SENSE3 INPUT4 CUR. SENSE4 GND1,2
VCC3,4
VSENSE3 IIN4 VIN4 ISENSE4 VSENSE4
IGND3,4
CONNECTION DIAGRAM (TOP VIEW)
VCC1,2 GND 1,2 INPUT2 INPUT1 CURRENT SENSE 1 CURRENT SENSE 2 VCC1,2 VCC3,4 GND 3,4 INPUT4 INPUT3 CURRENT SENSE 3 CURRENT SENSE 4 VCC3,4
1
28
VCC1,2 OUTPUT 1 OUTPUT 1 OUTPUT 1 OUTPUT 2 OUTPUT 2 OUTPUT 2 OUTPUT 3 OUTPUT 3 OUTPUT 3 OUTPUT 4 OUTPUT 4 OUTPUT 4
14
15
VCC3,4
3/18
VNQ600A(8960)
THERMAL DATA (Per island)
Symbol Rthj-lead Rthj-amb Rthj-amb Parameter Thermal resistance Junction-lead Thermal resistance Junction-ambient (one chip ON) Thermal resistance Junction-ambient (two chips ON) Value 20 60 (*) 46 (*) Unit C/W C/W C/W
(*) When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.
ELECTRICAL CHARACTERISTICS (8VSymbol VCC (**) VUSD (**) VOV (**) RON Vclamp Parameter Operating supply voltage Undervoltage shut-down Overvoltage shut-down On state resistance Clamp Voltage Test Conditions Min 5.5 3 36 Typ 13 4 Max 36 5.5 30 32 41 48 12 12 60 55 40 25 6 50 0 5 3 Unit V V V m m m V A A mA A A A A
IOUT1,2,3,4=5A; Tj=25C; VCC=13V IOUT1,2,3,4=5A; Tj=25C; 8V < VCC < 36V - 40C < Tj < 150C; VCC=13V ICC=20mA (see note 1) Off State; VCC=13V; VIN=VOUT=0V Off State; VCC=13V; VIN=VOUT=0V; IS (**) Supply current Tj=25C On State; VCC=13V; VIN=5V; IOUT=0A; RSENSE=3.9K IL(off1) IL(off2) IL(off3) IL(off4) Off state output current Off State Output Current Off State Output Current Off State Output Current VIN=VOUT=0V VIN=0V; VOUT=3.5V VIN=VOUT=0V; VCC=13V; Tj=125C VIN=VOUT=0V; VCC=13V; Tj=25C 0 -75
SWITCHING (VCC=13V)
Symbol tD(on) tD(off) (dVOUT/dt)on (dVOUT/dt)off Parameter Turn-on delay time Turn-off delay time Turn-on voltage slope Turn-off voltage slope Test Conditions RL=2.6 channels 1,2,3,4 (see fig. 1) RL=2.6 channels 1,2,3,4 (see fig. 1) RL=2.6 channels 1,2,3,4 (see fig. 1) RL=2.6 channels 1,2,3,4 (see fig. 1) Min Typ 40 40 0.20 0.20 Max Unit s s V/s V/s
PROTECTIONS
Symbol Ilim TTSD TR Thyst Vdemag VON
(**) Per island
Parameter DC Short circuit current Thermal shut-down temperature Thermal reset temperature Thermal hysteresis Turn-off output voltage clamp Output voltage drop limitation VCC=13V
Test Conditions 5.5VMin 25
Typ 40
Max 70 70
Unit A A C C
150 135 7 IOUT=2A; L=6mH IOUT=0.5A; Tj= -40C...+150C
175
200
15
C V mV
VCC-41 VCC-48 VCC-55 50
4/18
1
VNQ600A(8960)
CURRENT SENSE (9V < VCC< 16V) (See Fig. 3)
Symbol K1 dK1/K1 K2 dK2/K2 K3 dK3/K3 Parameter IOUT/ISENSE Current Sense Ratio Drift IOUT/ISENSE Current Sense Ratio Drift Test Conditions IOUT1,2=0.35A; VSENSE=0.5V; Tj= -40C...+150C IOUT1 or IOUT2=0.5A; VSENSE=0.5V; other channels open; Tj= -40C...150C IOUT=2A; VSENSE=2.5V; Tj=-40C Tj= 25C...+150C IOUT1 or IOUT2=5A; VSENSE=4V; other channels open; Tj=-40C...150C IOUT=4A; VSENSE=4V; Tj=-40C Tj= 25C...+150C IOUT1 or IOUT2=15A; VSENSE=4V; other channels open; Tj=-40C...150C VCC=5.5V; IOUT1,2=2A; RSENSE=10K VCC>8V; IOUT1,2=4A; RSENSE=10K VSENSEH RVSENSEH tDSENSE Analog sense output voltage in overtemperature condition Analog Sense Output Impedance in Overtemperature Condition Current sense delay response VCC=13V; RSENSE=3.9K VCC=13V; Tj>TTSD; All channels open to 90% ISENSE (see note 2) Min 3300 -10 3900 4150 -6 4150 4400 -6 2 4 5 400 500 4900 4900 4850 4850 Typ 4350 Max 6000 +10 6000 5800 +6 6000 5750 +6 % V V V s % % Unit
IOUT/ISENSE Current Sense Ratio Drift
VSENSE1,2
Max analog sense output voltage
LOGIC INPUT
Symbol VIL VIH VI(hyst) IIL IIH VICL Parameter Low level input voltage High level input voltage Input hysteresis voltage Low level input current High level input current Input clamp voltage Test Conditions Min 3.25 0.5 20 6 Typ Max 1.25 Unit V V V A A V V
VIN=1.25V VIN=3.25V IIN=1mA IIN= -1mA
65 75 6.8 -0.7
110 8
Note 1: Vclamp and VOV are correlated. Typical difference is 5V. Note 2: current sense signal delay after positive input slope. Note: Sense pin doesn't have to be left floating.
5/18
2
VNQ600A(8960)
TRUTH TABLE (per channel)
CONDITIONS Normal operation Overtemperature Undervoltage Overvoltage INPUT L H L H L H L H L H H L H L OUTPUT L H L L L L L L L L L H H L SENSE 0 Nominal 0 VSENSEH 0 0 0 0 0 (TjTTSD) VSENSEH 0 < Nominal 0
Short circuit to GND
Short circuit to VCC Negative output voltage clamp
6/18
VNQ600A(8960)
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 Class C E Test Levels I -25V +25V -25V +25V -4V +26.5V Test Levels II -50V +50V -50V +50V -5V +46.5V Test Levels III -75V +75V -100V +75V -6V +66.5V Test Levels IV -100V +100V -150V +100V -7V +86.5V Test Levels Result III C C C C C E Test Levels Delays and Impedance 2ms, 10 0.2ms, 10 0.1s, 50 0.1s, 50 100ms, 0.01 400ms, 2 Test Levels Result IV C C C C C E
Test Levels Result I C C C C C C
Test Levels Result II C C C C C E
Contents All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.
Figure 1: Switching Characteristics (Resistive load RL=2.6)
VOUT
80% dVOUT/dt(on) tr ISENSE 90% 10%
90% dVOUT/dt(off) tf t
INPUT
tDSENSE
t td(off)
td(on)
t
7/18
1
VNQ600A(8960)
Figure 2: Waveforms (per each chip)
NORMAL OPERATION INPUTn LOAD CURRENTn SENSEn UNDERVOLTAGE VCC INPUTn LOAD CURRENTn SENSEn OVERVOLTAGE
VOV VUSD VUSDhyst
VCC INPUTn LOAD CURRENTn SENSEn
VCC < VOV
VCC > VOV
SHORT TO GROUND INPUTn LOAD CURRENTn LOAD VOLTAGEn SENSEn
SHORT TO VCC INPUTn LOAD VOLTAGEn LOAD CURRENTn SENSEn
OVERTEMPERATURE Tj INPUTn LOAD CURRENTn SENSEn
ISENSE= VSENSEH RSENSE TTSD TR
8/18
VNQ600A(8960)
APPLICATION SCHEMATIC
+5V Rprot INPUT1 VCC1,2 VCC3,4 Dld Rprot Rprot C. SENSE 1 INPUT2 OUTPUT1
C Rprot Rprot INPUT3 Rprot Rprot Rprot C. SENSE 4 GND1,2 GND3,4 C. SENSE 3 INPUT4 OUTPUT4 OUTPUT3 C. SENSE 2 OUTPUT2
RSENSE1,2,3,4 VGND
RGND DGND
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / 2(IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds
and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift will not vary if more than one HSD shares the same diode/resistor network.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
9/18
1
VNQ600A(8960)
C I/Os PROTECTION:
If a ground protection network is used and negative transients are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Figure 3: IOUT/ISENSE versus IOUT IOUT/ISENSE
Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 6k. Recommended Rprot value is 5k.
6500 6000
max.Tj=-40C
5500
max.Tj=25...150C
5000 4500 4000 3500 3000
min.Tj=25...150C typical value
min.Tj=-40C
0
2
4
6
8
IOUT (A)
10
12
14
16
10/18
VNQ600A(8960)
Off State Output Current
IL(off1) (uA)
5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
High Level Input Current
Iih (uA)
5 4.5
Off state Vcc=36V Vin=Vout=0V
Vin=3.25V
4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Clamp Voltage
Vicl (V)
8 7.8
Input High Level
Vih (V)
3.6 3.4 3.2
Iin=1mA
7.6 7.4 7.2 7 6.8 6.6
3 2.8 2.6 2.4
6.4 6.2 6 -50 -25 0 25 50 75 100 125 150 175 2.2 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Low Level
Vil (V)
2.6 2.4 2.2
Input Hysteresis Voltage
Vhyst (V)
1.5 1.4 1.3 1.2
2 1.8 1.6 1.4
1.1 1 0.9 0.8 0.7
1.2 1 -50 -25 0 25 50 75 100 125 150 175
0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/18
VNQ600A(8960)
Overvoltage Shutdown
Vov (V)
50 48 46
ILIM Vs Tcase
Ilim (A)
80 70
Vcc=13V
60
44 42 40 38 36 20 34 32 30 -50 -25 0 25 50 75 100 125 150 175 10 0 -50 -25 0 25 50 75 100 125 150 175 50 40 30
Tc (C)
Tc (C)
Turn-on Voltage Slope
dVout/dt(on) (V/ms)
750 700 650 600 550 500 450 400 350 300 250 -50 -25 0 25 50 75 100 125 150 175
Turn-off Voltage Slope
dVout/dt(off) (V/ms)
500 450
Vcc=13V Rl=2.6Ohm
400 350 300 250 200 150 100 50 0 -50
Vcc=13V Rl=2.6Ohm
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
On State Resistance Vs Tcase
Ron (mOhm)
100 90 80 70 60 50 40 30
On State Resistance Vs VCC
Ron (mOhm)
80 70
Iout=5A 8VIout=5A
60 50 40 30 20
Tc= 150C
Tc= 25C
20 10 0 -75 -50 -25 0 25 50 75 100 125 150 175 10 0 5 10 15 20 25
Tc= - 40C
30
35
40
Tc (C)
Vcc (V)
12/18
VNQ600A(8960)
Maximum turn off current versus load inductance
ILMAX (A) 100
A
10
B C
1 0.001 0.01 0.1 L(mH )
A = Single Pulse at TJstart=150C B= Repetitive pulse at TJstart=100C C= Repetitive Pulse at TJstart=125C Conditions: VCC=13.5V Values are generated with RL=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
1
10
100
t
13/18
VNQ600A(8960)
SO-28 DOUBLE ISLAND THERMAL DATA
SO-28 Double island PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: 0.5cm2, 3cm2, 6cm2).
Thermal calculation according to the PCB heatsink area
Chip 1 ON OFF ON ON Chip 2 OFF ON ON ON Tjchip1 RthA x Pdchip1 + Tamb RthC x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb (RthA x Pdchip1) + RthC x Pdchip2 + Tamb Tjchip2 Note RthC x Pdchip1 + Tamb RthA x Pdchip2 + Tamb RthB x (Pdchip1 + Pdchip2) + Tamb Pdchip1=Pdchip2 (RthA x Pdchip2) + RthC x Pdchip1 + Tamb Pdchip1Pdchip2
RthA = Thermal resistance Junction to Ambient with one chip ON RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2 RthC = Mutual thermal resistance
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_am b (C/W) 70 60 50 40 30 20 10 0 1 2 3 4 5 PCB Cu heatsink area (cm ^2)/island 6 7
RthA RthB
RthC
14/18
VNQ600A(8960)
SO-28 Thermal Impedance Junction Ambient Single Pulse
Zth(C/W)
100
0,5 cm ^2/island 3 cm ^2/island 6 cm ^2/is land
10
One channel ON Two channels ON on same chip
1
0.1
0.01 0.0001
0.001
0.01
0.1 1 time(s)
10
100
1000
Thermal fitting model of a four channels HSD in SO-28
Pulse calculation formula
ZTH = R TH + Z THtp ( 1 - )
where
Tj_1
= tp T
0.5 0.05 0.3 3.4 11 15 30 0.001 5.00E-03 1.00E-02 0.2 1.5 5 150 6
C1
C2
C3
C4
C5
C6
Thermal Parameter
R1 Pd1 R2 R3 R4 R5 R6
Tj_2
Pd2
C13
C14
R13
R14
R17
R18
Tj_3
Pd3
C7
C8
C9
C10
C11
C12
R7
R8
R9
R10
R11
R12
Tj_4
Pd4
C15
C16
R15
R16
T_amb
Area/island (cm2) R1=R7=R13=R15 (C/W) R2=R8=R14=R16 (C/W) R3=R9 (C/W) R4=R10 (C/W) R5=R11 (C/W) R6=R12 (C/W) C1=C7=C13=C15 (W.s/C) C2=C8=C14=C16 (W.s/C) C3=C9 (W.s/C) C4=C10 (W.s/C) C5=C11 (W.s/C) C6=C12 (W.s/C) R17=R18 (C/W)
13
8
15/18
VNQ600A(8960)
SO-28 MECHANICAL DATA
DIM. A a1 b b1 C c1 D E e e3 F L S 7.40 0.40 17.7 10.00 1.27 16.51 7.60 1.27 8 (max.) 0.291 0.016 18.1 10.65 0.10 0.35 0.23 0.50 45 (typ.) 0.697 0.393 0.050 0.650 0.299 0.050 0.713 0.419 mm. MIN. TYP MAX. 2.65 0.30 0.49 0.32 0.004 0.013 0.009 0.020 MIN. inch TYP. MAX. 0.104 0.012 0.019 0.012
16/18
2
VNQ600A(8960)
SO-28 TUBE SHIPMENT (no suffix) Base Q.ty Bulk Q.ty Tube length ( 0.5) A B C ( 0.1)
All dimensions are in mm.
A
C B
28 700 532 3.5 13.8 0.6
TAPE AND REEL SHIPMENT (suffix "TR") REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 1000 1000 330 1.5 13 20.2 16.4 60 22.4
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 16 4 12 1.5 1.5 7.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
17/18
VNQ600A(8960)
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics (c) 2003 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com
18/18


▲Up To Search▲   

 
Price & Availability of VNQ600A-1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X